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Stimulated transitions between the self-trapped states of the nonlinear Schro¨dinger equation

P. V. Elyutin* and A. N. Rogovenko
Department of Physics, Moscow State University, Moscow 119899, Russia

~Received 23 December 1999; published 25 January 2001!

We investigate a particle confined within a double-well potential, its behavior described by a one-
dimensional nonlinear Schro¨dinger equation. Transitions between the two lowest self-trapped states of this
system are studied, in the two-mode approximation, under the influence of the external time-dependent per-
turbation. If the perturbation is harmonic in time, with the frequencyv, then transitions between the states
become possible if the amplitude of the perturbationF exceeds some threshold valueFc(v); above this
threshold motion of the system becomes chaotic. If the perturbation is broadband noise, then transitions
between the states are possible at arbitrarily smallF and occur in the process of the system’s energy diffusion.
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I. INTRODUCTION

The nonlinear Schro¨dinger equation~NLS!,

i\
]c

]t
52

\2

2m
Dc1U~rW !c1lucu2c, ~1!

serves as a tool for the account of many physical phenom
The stationary version of this equation was introduced
Deigen and Pekar to describe the self-trapped~autolocalized!
states of electrons in deformable crystal lattice~@1#, see also
@2#!. Gross @3# and Pitayevskii@4# derived Eq.~1! as the
mean-field approximation for the macroscopic wavefunct
c(rW,t) of the Bose-Einstein condensate of a nonideal B
gas at vanishing temperature~see also@5#!. The third avatar
of the NLS came in the realm of nonlinear optics, whe
c(rW,t) represents the envelope of a quasimonochrom
electromagnetic wave. The exact solution of the o
dimensional homogeneous (U(rW)50… NLS found by Za-
kharov and Shabat@6# formed the modern paradigm of sol
ton theory@7#.

Although the solutions of the NLS were extensively stu
ied, it seems that comparatively little is known about th
properties in the case of time-dependent potentials. In
paper we address a specific problem of this class. We s
consider the one-dimensional Eq.~1! with a potential that
consists of two parts: a permanent potentialU(x) that has the
form of symmetric double well, and some time-depend
potentialV(x,t) that will be called the perturbation. In th
absence of a perturbation the properties of the stationary
lutions of Eq.~1!, that have the form

c~x,t !5F~x!expS 2 i
E

\
t D , ~2!

depend essentially on the nonlinear coefficientl. At smalll
there is an infinite set of modes~2! that have symmetric
wave functions—odd or even,F(x)56F(2x). As l in-
creases above some threshold valuelc , a pair of stationary
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solutions~2! with broken symmetryFs(x)Þ6Fs(2x) ap-
pear. These solutions describe the states of the particle
are self-trapped in one of the wells of the permanent pot
tial. Forl,0 the corresponding energyEs is lower than that
of any symmetric mode@8#.

Our main concern will be the following question: if th
initial state of the system is one of these self-trapped sta
then how will the system evolve under the influence of t
nonstationary perturbation? In particular, can the pertur
tion transfer the system completely into the opposite s
trapped state?

There is a favorable circumstance that allows us to s
plify the problem. It happens that at moderatel.lc even
the self-trapped modes of high asymmetry can be accura
described by linear combination of the two lowest symme
modes, the evenF0(x) and the oddF1(x) @9#. Therefore in
studying the problem we can restrict ourselves by analysi
the evolution of the two-level system. In Sec. II we deri
the basic equations for this model. In Sec. III we study
influence of the external perturbation that harmonically d
pends on time. The evolution of the system under the in
ence of broadband noise is studied in Sec. IV. Section
contains the concluding discussion.

II. THE BASIC EQUATIONS

For future use we introduce the following quantities r
lated to the ~supposedly real! eigenfunctionsF0(x) and
F1(x):

J005E
2`

`

F0
4 dx, J015E

2`

`

F0
2F1

2 dx,

~3!

J115E
2`

`

F1
4 dx.

Let us represent the wave function of the system by the
perposition of the two lowest symmetric modes,

c~x,t !5b0~ t !F0~x!e2 ib0t1b1~ t !F1~x!e2 ib1t, ~4!

whereb i5\21(Ei1lJii ). By substitution of Eq.~4! in Eq.
~1!, consequent multiplication byF i(x), and integration
©2001 The American Physical Society10-1
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over the coordinatex we get the following system of two
equations for the complex amplitudesbi :

i\
db0

dt
52lb0ub0u2J0022lb0ub1u2J01

2lb0* b1
2J01e

i2(b02b1)t1b0V00~ t !

1b1V01~ t !ei (b02b1)t,
~5!

i\
db1

dt
52lb1ub1u2J1122lb1ub0u2J01

2lb0
2b1* J01e

2 i2(b02b1)t

1b1V11~ t !1b0V01~ t !e2 i (b02b1)t,

where the matrix elements of the perturbation are given
the integrals

Vi j ~ t !5E
2`

`

F i~x!V̂~x,t !F j~x!dx. ~6!

The system~5! conserves the norm of the statec(x,t) ~the
sum of probabilitiesub0u21ub1u251), and the common
phase of the wave function~4! is physically irrelevant.
Therefore we can describe the evolution of the system
just two real variables. The complex amplitudes could
cast in the formbi5Ani exp(2iqi), whereni andq i are real
time-dependent variables. Let us introduce the popula
difference D5n02n1 and the phaseQ52(q02q1)
12(b02b1)t. Then the system~5! turns into equations

Ḋ52B~12D2!sinQ1F~ t !
A12D2

2
sin

Q

2
,

~7!

Q̇52V12AD12BD cosQ2F~ t !
D

A12D2
cos

Q

2
1G~ t !,

where the following notations have been introduce
V52(b12b0)1l\21(J112J00), A5l\21(4J012J00
2J11)/2, B5l\21J01, F(t)54\21V01(t) and G(t)
52\21@V00(t)2V11(t)#. All these quantities have the sam
dimensionality, namely that of the frequency. By fixing t
unit of the frequency through linking it to one of these p
rameters~e.g., V), in the following we consider them a
dimensionless quantities. If the nonlinearity parameter v
ishes,l50, then Eqs.~7! become equivalent to the wel
known Bloch equations@10#.

The nonlinear Bloch equations~7! can be considered as
pair of canonical equations for the conjugated variablesD,Q
of the nonautonomous system with one degree of freed
with the Hamiltonian functionH5H01H1(t), where the
unperturbed Hamiltonian is

H05VD1AD22B~12D2!cosQ, ~8!

and the perturbation is
02661
y
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:

-

-

m

H1~ t !5G~ t !D2F~ t !A12D2 cos
Q

2
. ~9!

In what follows we refer to the value of the functionH0 as
the~dimensionless! energyE of the system. In the absence o
perturbation the system~7! has two trivial stationary solu-
tions, D561 andQ arbitrary, that correspond to the sym
metric eigenstatesF0 and F1 respectively, and two non
trivial fixed points D052V/2(A1B), Q50, or Q52p,
that correspond to the pair of self-trapped states that we
the stationary states. These states are divided from the
of the phase space by a separatrix~see Fig. 1!. The frequency
V0 of small oscillations ofD and Q around the stationary
values is determined by the expressionV0

25B@4(A1B)2

2V2#/2(A1B).
For future numerical calculations we need to specify

parameters of the unperturbed Hamiltonian~8!. We have
chosen the following set of values:V55.388, A51.902,
and B52.022. With this choice the stationary states whi
are located atD0520.686 correspond to the minimal energ
of the systemE2523.871, the separatrix coincides with th
isoenergetic lineE5Es523.486, and the maximal energ
E157.290 corresponds to the lineD51.

III. THE HARMONIC PERTURBATION

We shall assume that the even~diagonal! perturbation is
absent,G(t)50, and the odd~nondiagonal! has the form

F~ t !5Fsin~vt1f!. ~10!

Numerical simulations show, that for given values of t
frequencyv and the initial phasef of the perturbation there
is a threshold valueFc(v,f) of its amplitude such that for
F,Fc the phase trajectory of the system remains indefinit
within one loop of the separatrix, while forF.Fc the phase
trajectory crosses the separatrix many times and may c
close to the opposite stable point. The dependence
Fc(v,f) on the initial phase is weak: the relative variatio
of the thresholds due to the change of the initial phase h

FIG. 1. Phase trajectories of the system~7! in the absence of
perturbations on the planeD2Q for different values of energy: A-
E523.7, B-E5Es523.487, C-E50, D-E55.
0-2
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STIMULATED TRANSITIONS BETWEEN THE SELF- . . . PHYSICAL REVIEW E 63 026610
the order of a few percent. Hence for the time being
ignore this dependence and shall consider only the de
denceFc(v) ~see Fig. 2!.

The abrupt change in the character of motion at a cer
threshold value of the perturbation magnitude strongly in
cates the onset of global stochasticity that comes from
overlap of resonances@11,12# and the destruction of the
noble tori @12,13#. This is indeed the case: by taking som
phase point at the separatrix for the initial conditions, o
can see that at the same threshold valuesFc(v) the stochas-
tic layer around the separatrix explodes and covers the vi
ity of the stable states. However, even at rather small
cesses ofF over the threshold the crossing of the separa
comes fast, after about ten periods of the field. At these tim
the chaotic nature of the system’s dynamics remains c
cealed: the motion seems regular and rather simple. Th
fore we can try to explain the behavior of the depende
Fc(v) in the frame of regular dynamics.

Specific features of the perturbing terms in Eqs.~7! create
technical complications that are irrelevant to the nature of
phenomenon. The main qualitative features of the separa
crossing under the influence of the harmonic field could
explained with a toy model—the one-dimensional Duffi
oscillator with the equation of motion

ẍ1x2x35F sinvt ~11!

and the initial conditionsx(0)50, ẋ(0)50. This model also
has a stable point, surrounded by a separatrix.

We assume the frequency detuningd5v21 to be small,
udu!1. If the perturbationF is weak, then the nonlinearity o
the oscillator could be neglected, at least in the lowest
proximation. Then the solution of Eq.~11! has the approxi-
mate form

x~ t !'2
F

d
sin

d

2
t cosFvt2

d

2
t G . ~12!

From this law of motion, assuming that the oscillator cou
be linearized in all the rangeuxu<1, we find a crude estimat
for the threshold of the separatrix crossing, namelyFc
5udu.

FIG. 2. Dependence of threshold amplitudesFc of the nondi-
agonal harmonic perturbation~10! on the relative frequencyv/V0

for the nonlinear Bloch equations~7! with the initial phasef50.
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Now we improve this estimate by taking into account t
nonlinearity. Let us represent the motion of the oscillator
the form x(t)5A cos(vt1w), where A and w are slowly
varying functions of time. The law~12! corresponds to the
equations of motion for the slow amplitude and phase,

Ȧ52
F

2
cosw, ẇ52

d

2
, ~13!

with the initial conditionsA(0)50, w(0)5p. Let us now
replace the eigenfrequency of the oscillatorV051 in the
r.h.s. of the second of Eqs.~13! by the eigenfrequency of the
nonlinear oscillatorV(A) that depends on the amplitude
Then for the model~11!, for small A, we haveV(A)51
23A2/16. Consequently the evolution of the system cou
be described by the system of equations

Ȧ52
F

2
cosw, ẇ52

d

2
2

3

32
A2, ~14!

with the same initial conditions as~13!. The threshold of the
separatrix crossing could be found from the condition t
oscillations may reach the saddle points: maxA(t)51. From
the second of Eqs.~14! it is seen, that ifd.0, then the phase
shift decreases monotonically, thus decreasing the rate o
amplitude growth. Ifd,23/16520.188, then the phas
shift increases monotonically while the amplitude stays
low its critical value,A,1; and again the rate of the ampl
tude growth decreases with time. But in the band23/165
20.188,d,0 the phase shift at first grows, then reache
maximum and starts to decrease, passing the zero valu
some later time,t0. Consequently, there are two moments
which the amplitude growth rate is maximal,t50 and t
5t0. Thus one may expect that the dependenceFc(v) will
have a minimum somewhere in the range 13/1650.812,v
,1. The numerical solution of Eqs.~14! shows that this is
true: the minimum ofFc(v) is reached forv50.87, about
the middle of this band~see Fig. 3!.

To find the condition for the separatrix crossing, Eqs.~14!
should be solved on a finite interval of time, while the pha

FIG. 3. Dependence of threshold amplitudesFc of the perturba-
tion on the frequencyv for the Duffing oscillator~11!. The dashed
line–the zeroth~linear! approximation,s –estimates found from
Eqs. ~14! ~solid line is an eyeguide!; d –results of the numerica
experiment.
0-3
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shift reaches the value6p/2. This could be done in a num
ber of ways that will produce analytical estimates for t
threshold values. In the exact resonance~at d50) in the
zeroth approximation the amplitude dependence on tim
linear, A05Ft/2. By substitution of this expression in th
r.h.s. of the second of Eqs.~14!, we have in the first approxi
mation

w1~ t !5p2
1

128
F2t3. ~15!

The timetm when the amplitudeA(t) reaches the maximum
is found from the conditionw1(tm)5p/2. Hence from the
first of Eqs. ~14!, in the first approximation, we have th
threshold value of the perturbation in the exact resonanc

Fc~1!5
27

16F E
0

p/2

u22/3 cosu duG23

50.0666. ~16!

This agrees with the result of the numerical solution of
system~14! with an accuracy of about 6%, but differs from
the value obtained in the numerical simulations by a fac
about 1.5.

The studied model~11! shares with the system~7! the
‘‘soft’’ character of the nonlinearity of oscillations aroun
the stable points: the eigenfrequency of oscillations
creases with the growth of their amplitude. This comm
feature is responsible for the similar behavior ofFc(v) in
the two models~compare Figs. 2 and 3!—namely, the pres-
ence of a nonzero minimum at a frequency somewhat lo
than that of the small oscillations,V0.

Now we return to the case of the chaotic motion of t
system above the threshold. For the system with the Ha
tonianH5H0(D,Q)1V(D,Q)sinvt, with a small perturba-
tion V the energy half-width of the stochastic layer is giv
by the Melnikov-Arnold integral

DE5E
2`

` S ]V

]D
Ḋ1

]V

]Q
Q̇ D sinvt dt, ~17!

whereD(t) and Q(t) are taken for the unperturbed motio
on the separatrix@11#. Thus we can expect that the motion
phase space will persist inside the domain limited by
isoenergetic lineE5Es1DE. Since for the Hamiltonian
systems the phase volume is conserved, we may expec
invariant density in the phase space to be uniform. This le
to the invariant distribution of the energy valuesw(E) of the
form

w~E!5h
2

V~E!
~E2,E,Es!,

~18!

w~E!5h
1

V~E!
~Es,E,Es1DE!,

whereh is the normalization constant, and the factor ‘‘2’’ i
the first line accounts for the double degeneracy of the
ergy states. The comparison of this distribution with the o
02661
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obtained in the numerical simulations is shown in Fig. 4. T
general agreement is clearly present, in spite of rather la
value of the perturbation magnitude. The discrepancy
tween the distributions for the energy values around a
aboveEs1DE is due to the borderline resonances of t
stochastic layer and could be anticipated.

If we define the vicinity of the stable state by the cond
tion E,E* , then the average fraction of time spent in th
domain is

m~E* !5hE
E2

E
* dE

V~E!
'h

~E* 2E2!

V0
~19!

and the average transition time from vicinity of one of t
self-trapped states to vicinity of the other is about

T;
t

m~E* !
, ~20!

wheret is the energy relaxation time. For the over-thresho
perturbation amplitude the latter has value of about the
riod of the harmonic field.

IV. THE BROADBAND PERTURBATION

The threshold character of the separatrix crossing in
harmonic field stems from the termination of the reson
energy absorption before the valueEs is achieved. If the
perturbation is broadband noise, then the energy absorp
can go on indefinitely at arbitrarily small field amplitud
The problem of energy absorption from the external no
has been studied extensively as a part of the theory of d
pative systems in contact with the heat bath@14–16#. The
averaged evolution of the system can be described as a
cess of diffusion on the energy axis. The equation that g
erns this process could be derived from the Fokker-Pla
equation@14,15#. It is inconvenient, however, to adjust th
known results to our case since our Hamiltonian~7!, ~8! has
a rather unusual structure. Instead we derive the equation
the energy diffusion considering the systemformally as a
quantum one, starting from quantum kinetic equations a

FIG. 4. Distributionw of system’s values of energy under th
influence of the over-threshold harmonic perturbation withv5V0

52.896 andF52Fc50.2. Dashed line–theoretical distribution E
~18!, solid line–results of the numerical experiment.
0-4
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going to the classical limit\→0 to obtain our results~cf.
@16,17#!.

Let us consider a quantum system with the unpertur
HamiltonianĤ0 with one degree of freedom and a discre
energy spectrum under the perturbationV̂j(t) whereV̂ de-
pends on the dynamical variables of the system andj(t) is a
stationary weak broadband noise specified by its spec
densityS(v). The state of the system could be described
the probabilitiesrn of finding it in the quantum stateun&.
The evolution of these probabilities obeys the system of m
ter equations

drn

dt
52rn (

k52n

`

Ẇn,n1k1 (
k52n

`

rn1kẆn1k,n . ~21!

The rates of transitionsẆn1k,n are determined by the pertu
bation theory formula

Ẇn,n1k5
2p

\2 uVn,n1ku2S~2vn,n1k!, ~22!

whereVn,n1k are the matrix elements of the perturbation a
S(2vn,n1k) is the spectral density of noise at the frequen
of transition. Let us take the probabilities to be functions n
on the level numbern, but on its energy:rn→r(En). In the
quasiclassical case the energy spectrum of the system c
be related to the frequency of its classical motion at a gi
energyV(E):

En1k5En6\VS En6k
\V

2 D , ~23!

and the matrix elements of the perturbationVn,n1k could be
replaced by the Fourier components of the unperturbed
tion of the dynamical variable that corresponds to the ope
tor V̂: if

V~ t !5 (
k52`

`

Vke
2 ikVt, ~24!

then

Vn,n1k→VkS En1k
\V

2 D . ~25!

We assumer(E) to be a smooth function, and expand
value to the terms of the second order in\ and the values of
En1k andVn,n1k to the first order in\. After the substitution
of these expansions into Eq.~21! and going to the limit\
→0 we obtain a purely classical equation. At this point w
restrict our consideration to the case of white noise with
constant spectral densityS(v)51. For this case we have

]r

]t
5V

]

]E FD~E!
]r

]EG , ~26!

where the energy diffusion coefficientD(E) is given by the
expression
02661
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D~E!52pV~E!(
k51

`

k2Vk
2~E!5

1

2E0

2p/VS dV

dt D
2

dt.

~27!

The energy dependence of the diffusion coefficientD for the
unperturbed system~7! with the perturbationV(D,Q)
5A12D2 cos(Q/2) is shown in Fig. 5. We note a discont
nuity of D(E) at the separatrix value of energy:D(Es10)
52D(Es20). This jump is not a direct consequence of t
presence of the separatrix, but reflects both the global st
ture of the phase space and the behavior of the perturbatiV
in the neighborhood of the separatrix.

Since the classical distribution in energyw(E) is con-
nected to the probability densityr(E) by the relationw(E)
5r(E)@\V(E)#21, we have the equation for thew(E) in
the form

]w

]t
5

]

]E S D~E!
]

]E
~wV! D . ~28!

The stationary solution of Eq.~28! has the form given by
Eq. ~18!, but the second line holds now in all the rangeEs
,E,E1 . If the system was initially in one of the stabl
states, then in course of the energy diffusion it has the
portunity to migrate to the vicinity of the opposite stab
state. The characteristic time of the average transfer is de
mined by the relaxation time of the distribution to its statio
ary value; from Eq.~26! it can be estimated as

T;
~E12E2!2

^VD&
, ~29!

where the angular brackets denote averaging over the ene

V. CONCLUSIONS

The main question addressed by this paper is: If the s
tem, that is described by the one-dimensional nonlin
Scrödinger equation with the potential of the symmetr
double well, is initially in one of the lowest asymmetr
~self-trapped! states, then can the time-dependent pertur
tion transfer the system completely to the opposite asymm

FIG. 5. Dependence of the energy diffusion coefficientD under
the influence of the white noise of unit spectral density on
energyE.
0-5
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P. V. ELYUTIN AND A. N. ROGOVENKO PHYSICAL REVIEW E63 026610
ric mode? The answer is yes, but almost completely and o
by chance.

For the harmonic perturbation with amplitudeF that ex-
ceeds the thresholdFc(v), the system’s motion is capture
in the stochastic layer that embraces both domains of vi
tion around the stable states and a strip around the separ
When moving in this domain, the system can come a
trarily close to the opposite asymmetric state. However,
nature of this process is purely chaotic and, hence, unpre
able. There is no way to create in the nonlinear system
‘‘ p-pulse’’ @10# that will transfer the system unambiguous
from one of the stable states to another. Finally we note
the threshold magnitude of the perturbation is only num
cally small in comparison with the depth of the self-trappi
wells: to make the transfer possible, the system must be
turbed strongly.

For the system under the influence of the white noise~or,
generally speaking, any sufficiently broadband noise! the
process of energy diffusion eventually spreads the proba
ity density over all phase space of the systemH0. In this case
the system can occasionally come close to the opposite s
state. We note, however, that the probability of finding t
system within one of the self-trapping wells is rather sm
with our standard set of parameters it is only about few p
cent.

The main approximation of our calculations consisted
the truncation of the expansion of the wave function to j
two modes@see Eq.~4!#. It was justified by the high quality
of this approximation in representing the unperturbed s
trapped states@9#. Whether this accuracy will hold for the
seriously perturbed system is quite a different question.
v.

hy
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the harmonic perturbation of moderate amplitude the sys
stays locked within the narrow energy domain~see Fig. 4!,
and the addition of contributions of modesF i with i>2, that
will lead to the extension of the energy space of the syst
will have little influence.

The situation may be different for broadband noise, wh
the system can reach any point in the phase space. How
the main contribution to the energy diffusion coefficie
comes from frequencies that are lower thanV0: in particular,
at the separatrix they contribute about 0.66 of the total va
Thus if the spectrum of noise has high-frequency cutoff j
above theV0, then the energy diffusion ceases at the ene
Eh.Es at whichV(Eh)5V0 ~for our set of parametersEh
520.356) and the system stays locked within the restric
energy domain. Then, in parallel to the case of the harmo
field, we can conclude the unimportance of the extension
the energy space by addition of higher modes.
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